
Exercice I

Merci Juliette!

s) Un entier al non nul est un diviseur d'un entier a s'il existe un entier relatif de tel que:
a = kd. On:
2) a: Soit a et b deux entiers! On appelle combinaison
linéaire de deux entiers a et b toutes expressions de les forme au+bv/avec v et v des entiers relatifs. Our
les deux combinaisons lineaires les plus célèbres sont: - a +b avec v = s et v = s orn - a -b avec v = s et v = s
b) Soit d'entier non nul et a et b des entiers. d la « est-à-dire qu'il axiste un entier le tel que: a = led Oni
a = kd Oni d/b c'est - à - dire qu'il ariste un entier l tel que:
25 On a done av = kvd et bv = fvd On abtient done la combinaison lineaire suionte: au + bv = (kv + fvd) Birl au + bv = (kv + fvd)
On obtient donc la combinaison linéaire suionte:
au +bv = (ku + Pr)d Biz

On a : au+bv = (kv + fr)d our (ku + h) entier can Z est stable au + bv = d 1 lavec 1= (ku +Pv) - entier reliatif Done d'divise Foute combinaison linea des entiers a et 6. The I est un diviseur de 105 car il existe entier & tel que! 105 = &x7 (avec &= 15 4 est un diviseur de 49 car il existe un entier l'tel que 49= 1x7 (ovec l=7 7 divise 105 x 20242 can 105 x 20242 = 7 x (15 x 2024) et 7 divise 171 x 49 can 171 x 49 = 7x /7x 171 et (15 x 2024) et (7x171) sont des entiers stable pas multiplication Ainsi si 7/105×2024 et 7/171×49 clors 7 divise la combinaison linéaire Soit of eN et deux entiers consecutifs: doux entiers consecutifs s'écrivent : 2ket 2k+1 un entier pair et le suivant est donc impair ou Si d/2k-et d/2k+1 on obtient Sollake d/2k+1-2k divise 1 signifie qu'il exist un ntiente Dond d = 1 et & = 1. Ainsi 1x1=1 et d'est donc égaly à 1

Exercice III

La contraposée de cette affirmation est : « Si un entier n est pair, alors n⁵ est pair ».

Supposons n pair: il existe donc un entier k tel que: n = 2k.

Donc $n^5 = (2k)^5 = 32k^5 = 2 \times 16k^5$. Vu que $16k^5$ est entier en tant que produit d'entiers (\mathbb{Z} est stable par produit), on a donc n^5 qui est pair.

Ainsi, par principe de contraposée, on a bien : (si n⁵ est impair, alors n est impair) qui est démontrée.