<u>Nota bene</u> : ce travail est à rendre pour le 6 Janvier. Vous rendrez <u>un seul lot</u> de copies DOUBLES par groupe de 3 ou 4 élèves, avec <u>les noms de CHACUN des élèves constituant le groupe</u> sur <u>chaque copie</u> du lot.

Des exercices (ou copies) identiques d'un groupe à l'autre conduiront à l'arrêt de la correction de votre copie et à l'absence de note pour le DM, et ce pour le groupe ayant recopié ainsi que celui ayant fourni la solution.

Vous apporterez le plus grand soin à la présentation de la copie, en soulignant et encadrant à l'aide d'une règle les éléments essentiels de votre rédaction. Les copies dont la présentation laisse à désirer seront pénalisées.

Les copies rendues en retard ou ne respectant pas ces consignes ne seront pas corrigées.

Exercice I

Déterminer, en justifiant, chacune des limites suivantes :

a)
$$\lim_{x \to -\infty} 3xe^x$$
 b) $\lim_{x \to +\infty} (2x - e^x)$ c) $\lim_{x \to +\infty} (xe^{-x})$ d) $\lim_{x \to +\infty} (1 + \frac{e^x}{2x^2})$ e) $\lim_{x \to -\infty} (1 + e^x \sin(x))$ f) $\lim_{x \to +\infty} \frac{e^{0,1x}}{2x}$

Exercice II

f est la fonction définie sur \mathbb{R} par $f(x) = \frac{e^{2x} - 2}{e^{3x} + 1}$

Déterminer les limites de f en $-\infty$ et en $+\infty$ en justifiant, et interpréter graphiquement ces résultats.

Exercice III

On s'intéresse à la chute d'une goutte d'eau qui se détache d'un nuage sans vitesse initiale. Un modèle simplifié permet d'établir que la vitesse instantanée verticale, exprimée en m·s⁻¹, de chute de la goutte

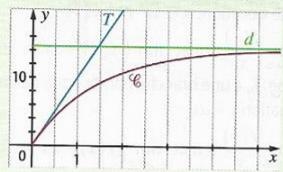
en fonction de la durée de chute t est donnée par la fonction v définie sur $[0; +\infty[$ par $v(t) = 9,81 \frac{m}{k} \left(1 - \mathrm{e}^{-\frac{k}{m}t}\right)$. La constante m est la masse de la goutte en milligramme et la constante k est un coefficient strictement positif lié au frottement de l'air.

- Déterminer les variations de la vitesse de la goutte d'eau.
- 2. Montrer que $\lim_{t \to +\infty} v(t) = 9.81 \frac{m}{k}$.

Cette limite s'appelle vitesse limite de la goutte.

3. Un scientifique affirme qu'au bout d'une durée de chute égale à $5\frac{m}{k}$, la vitesse de la goutte dépasse 99 % de sa vitesse limite. Cette affirmation est-elle correcte ?

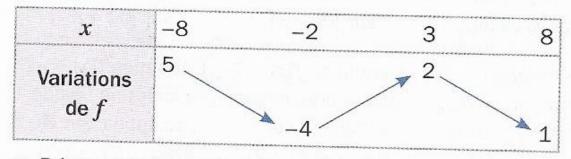
- 4. On nomme \mathscr{C} la courbe représentative de la fonction ν .
- a. Justifier que la courbe $\mathscr C$ admet une asymptote d horizontale. En donner une équation.
- **b.** Déterminer une équation de la tangente T à la courbe $\mathscr C$ au point d'abscisse 0.
- c. Calculer l'abscisse du point d'intersection de T.
- 5. On a représenté \mathscr{C} , T et d sur le graphique ci-dessous.



Quelle est la valeur de $\frac{m}{k}$? Justifier.

Exercice IV

f est une fonction définie sur $[-8\ ; 8]$, dont le tableau de variations est donné ci-dessous.



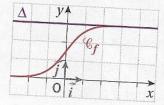
- a. Démontrer que l'équation f(x) = 3 n'admet aucune solution sur [-2; 8].
- **b.** Justifier que l'équation f(x) = 3 admet une unique solution sur [-8; -2].
- Justifier que l'équation f(x) = 0 admet exactement deux solutions sur [-8; 8].

Exercice V

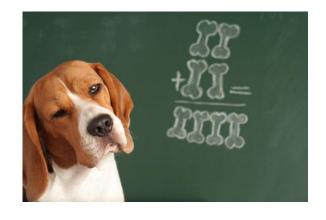
On considère la fonction f définie sur ${\mathbb R}$ par :

$$f(x) = \frac{3}{1 + e^{-2x}}$$

 $f(x) = \frac{3}{1 + \mathrm{e}^{-2x}}.$ On a tracé, dans le plan muni d'un repère orthogonal $(0\ ;\ \overrightarrow{i},\overrightarrow{j})$, la courbe représentative \mathscr{C}_f de la fonction f et la droite Δ d'équation y = 3.



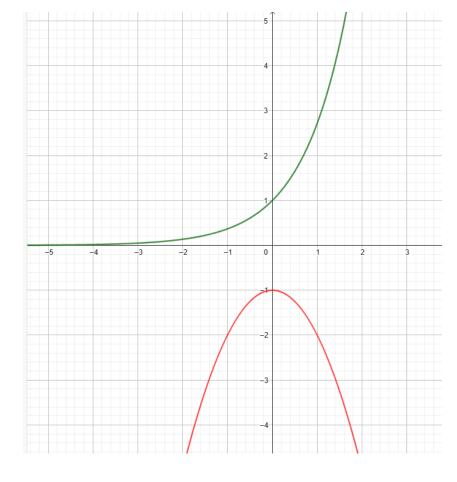
- a. Justifier que la fonction f est continue sur $\mathbb R.$
- b. Montrer que f est strictement croissante sur $\mathbb R.$
- c. Justifier que la droite Δ est asymptote à la courbe \mathscr{C}_f .
- **d.** Démontrer que l'équation f(x) = 2,999 admet une unique solution α sur \mathbb{R} .
- $\mbox{\&}$. Déterminer un encadrement de α d'amplitude 10^{-2} .



Exercice VI

Dans un repère orthogonal du plan, soit C_1 et C_2 les courbes d'équations respectives : $y = e^x$ et $y = -x^2 - 1$.

0- Identifier sur le graphique ci-dessous les courbes C_1 et C_2 , puis conjecturer si ces deux courbes admettent une tangente commune, en précisant approximativement l'abscisse du (des) point(s) de contact avec chacune de ces deux courbes.



- 1. On désigne par a et b deux réels quelconques, par A le point de C_1 d'abscisse α et par B le point de C_2 d'abscisse b.
 - a. Déterminer une équation de la tangente T_A à la courbe C_1 au point A, puis de la tangente T_B à la courbe C_2 au point B.
 - b. En déduire que ces droites sont confondues si et seulement si

$$\begin{cases} e^a = -2b \\ e^a - ae^a = b^2 - 1 \end{cases}$$

c. Montrer que ce système équivaut à
$$\begin{cases} e^a = -2b \\ e^{2a} + 4ae^a - 4e^a - 4 = 0 \end{cases}$$

2. Soit f la fonction définie sur \mathbb{R} par

$$f(x) = e^{2x} + 4xe^{x} - 4e^{x} - 4$$
.

On va montrer que l'équation f(x) = 0 admet une unique solution.

- **a.** Montrer que pour x < 0, on a $e^{2x} 4 < 0$ et $4e^{x}(x-1) < 0$. En déduire que l'équation n'a pas de solution sur $]-\infty;0[$.
- **b.** Étudier les variations de f sur $[0; +\infty[$.
- c. Montrer que l'équation f(x) = 0 admet une unique solution a sur $[0; +\infty[$ et donner un encadrement d'amplitude 10^{-2} de a.
- 3. On prend pour A le point d'abscisse a. Déterminer un encadrement d'amplitude 10^{-1} du réel b pour lequel les droites T_A et T_B sont confondues.

BONUS (facultatif, pour se préparer au post bac.)

0- Discuter du nombre de points d'intersection entre la courbe de la fonction cube et celle d'une fonction affine.

<u>l-</u>

Soit $f:[0,1] \to [0,1]$, une fonction continue.

Montrer que f a au moins un point fixe sur [0; 1], c'est-à-dire que l'équation f(x) = x admet au moins une solution sur [0; 1].

<u>II-</u> a et b sont des réels tels que : $a \le b$.

Soit f une fonction continue définie sur [a; b] telle que f(a) = f(b).

Soit g la fonction définie sur $\left[a; \frac{a+b}{2}\right]$ par : $g(t) = f(t + \frac{b-a}{2}) - f(t)$.

- 0) Expliquer sommairement pourquoi g est bien définie sur l'intervalle $[a; \frac{a+b}{2}]$.
- 1) Démontrer que g s'annule au moins une fois sur l'intervalle $[a; \frac{a+b}{2}]$.

<u>Indication</u>: s'intéresser aux nombres g(a) et $g(\frac{a+b}{2})$.

2) Application

Un piéton parcourt 4 km en une heure. Montrer qu'il existe un intervalle <u>d'amplitude 30 minutes</u> pendant lequel le piéton parcourt <u>exactement</u> 2 km. On supposera que la fonction définissant la distance parcourue par le piéton est continue sur [0; 1].