CORRECTION DU BAC BLANC DE MATHS

vendredi 6 février 2025 (8h 12h)

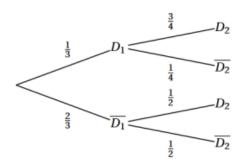
EXERCICE 1:

Métropole 12 septembre 2024 jour 2 avec modifications

Partie A: étude du cas particulier où n = 2

Dans cette partie, le robot réalise deux déplacements successifs.

1. On complète l'arbre pondéré suivant :



2. On a
$$P(D_1 \cap D_2) = P(D_1) \times P_{D_1}(D_2) = \frac{1}{3} \times \frac{3}{4} = \frac{1}{4}$$
.

3. De la même façon $P(\overline{D_1} \cap D_2) = P(\overline{D_1}) \times P_{\overline{D_1}}(D_2) = \frac{2}{3} \times \frac{1}{3} = \frac{1}{3}$. D'après la loi des probabilités totales :

$$p_2 = P(D_2) = P(D_1 \cap D_2) + P(\overline{D_1} \cap D_2) = \frac{1}{4} + \frac{1}{3} = \frac{3+4}{3 \times 4} = \frac{7}{12}.$$

 $p_2 = P(D_2) = P(D_1 \cap D_2) + P(\overline{D_1} \cap D_2) = \frac{1}{4} + \frac{1}{3} = \frac{3+4}{3 \times 4} = \frac{7}{12}.$ **4.** On a d'abord $P(\overline{D_2}) = 1 - P(D_2) = 1 - \frac{7}{12} = \frac{5}{12}.$

Il faut calculer la probabilité conditionnelle :

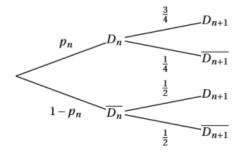
$$p_{\overline{D_2}}(D_1) = \frac{p(\overline{D_2} \cap D_1)}{p(\overline{D_2})} = \frac{p(D_1 \cap \overline{D_2})}{p(\overline{D_2})} = \frac{\frac{1}{3} \times \frac{1}{4}}{\frac{5}{12}} = \frac{\frac{1}{12}}{\frac{5}{12}} = \frac{1}{5} = 0,2.$$

Partie B: étude de la suite (p_n) .

ı.

$$p_{n+1} = \frac{1}{4}p_n + \frac{1}{2}$$

On reprend l'arbre initial en partant de la branche D_n pondérée par le nombre p_n et la branche $\overline{D_n}$ pondérée par $1 - p_n$, soit :



Toujours d'après la loi des probabilités totales :

$$p_{n+1} = P(D_{n+1}) = P(D_n) \times P_{D_n}(D_{n+1}) + P(\overline{D_n}) \times P_{\overline{D_n}}(D_{n+1}) = p_n \times \frac{3}{4} + (1 - p_n) \times \frac{1}{2}$$
$$= \frac{3}{4}p_n + \frac{1}{2} - \frac{1}{2}p_n = \frac{1}{4}p_n + \frac{1}{2}$$

a. Quel que soit
$$n \ge 1$$
, on a $u_{n+1} = p_{n+1} - \frac{2}{3} = \frac{1}{4}p_n + \frac{1}{2} - \frac{2}{3} = \frac{1}{4}p_n + \frac{3}{6} - \frac{4}{6} = \frac{1}{4}p_n - \frac{1}{6}$
$$= \frac{1}{4}\left(p_n - \frac{4}{6}\right) = \frac{1}{4}\left(p_n - \frac{2}{3}\right) = \frac{1}{4}u_n.$$

La relation $u_{n+1} = \frac{1}{4}u_n$, avec $n \ge 1$ montre que la suite (u_n) est une suite géométrique de raison $\frac{1}{4}$ et de premier terme $u_1 = p_1 - \frac{2}{3} = \frac{1}{3} - \frac{2}{3} = -\frac{1}{3}$.

b. On sait que pour
$$n \ge 1$$
, $u_n = -\frac{1}{3} \times \left(\frac{1}{4}\right)^{n-1}$.

$$\text{Comme} - 1 < \frac{1}{4} < 1 \text{, on sait que } \lim_{n \to +\infty} \left(\frac{1}{4}\right)^{n-1} = 0 \text{ et donc } \lim_{n \to +\infty} -\frac{1}{3} \times \left(\frac{1}{4}\right)^{n-1} = 0.$$

On a donc
$$\lim_{n\to+\infty} u_n = p_n - \frac{2}{3} = 0$$
 et finalement : $\lim_{n\to+\infty} p_n = \frac{2}{3}$.

Conclusion : sur un grand nombre de déplacements du robot celui-ci se dirigera en moyenne deux fois sur trois à droite et donc une fois sur trois à gauche.

PARTIE C:

a) On a dix répétitions identiques et indépendantes dans un schéma de Bernoulli, le succès ici étant d'aller à droite avec $p = \frac{3}{4}$. X suit donc la loi binomiale de paramètres n = 10 et $p = \frac{3}{4}$.

b) P(X = 7) =
$$\binom{10}{7} \left(\frac{3}{4}\right)^7 \left(1 - \frac{3}{4}\right)^{10-7} \approx 0.25$$
 (arrondie au centième).

La probabilité que le robot aille 7 fois à droite sur les 10 déplacements est de 25%.

c)

La variable aléatoire X égale au nombre de déplacements vers la droite suit une loi de Bernoulli de paramètres n = 10 et $p = \frac{3}{4}$.

La seule possibilité de revenir au point de départ est de faire (globalement) 5 déplacements $P(X=5) = {10 \choose 5} \times {3 \choose 4}^5 \times {1 \choose 4}^5$ à droite et donc 5 déplacements à gauche, soit :

P(X = 5) ≈ 0,058 (arrondie au millième)

d)
$$P(X \ge 1) = 1 - P(X = 0) \iff P(X \ge 1) = 1 - 0.25^{10}$$

D'où P(X ≥ 1) ≈ 0,999999 (arrondie au millionième)

e) P(X ≤ 4) ≈ 0,0197 (arrondie au dix-millième)

Sur un très grand nombre de répétitions de dix déplacements aléatoires du robot, ce dernier faira en moyenne 7,5 déplacements vers la droite.

Polynésie sept 2023 **EXERCICE 2:**

On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{3}{4}x^2 - 2x + 3$.

1. $f'(x) = \frac{3}{2}x - 2 = \frac{3}{2}\left(x - \frac{4}{3}\right)$, donc f'(x) est du signe de $x - \frac{4}{3}$ donc s'annule et change de signe pour $x = \frac{4}{3}$.

f est une fonction polynôme donc:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{3}{4} x^2 = +\infty \text{ et } \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3}{4} x^2 = +\infty.$$
De plus, $f\left(\frac{4}{3}\right) = \frac{3}{4} \times \frac{4}{3} \times \frac{4}{3} - 2 \times \frac{4}{3} + 3 = \frac{4}{3} - \frac{8}{3} + \frac{9}{3} = \frac{5}{3}.$

On établit le tableau des variations de f

x	-∞		4/3		+∞
$x - \frac{4}{3}$		-	0	+	
f'(x)			0	+	
f(x)	+∞ <	\	\		× +∞
			5/		

2. D'après le résultat précédent la fonction f est croissante sur l'intervalle $\left[\frac{4}{2};2\right]$.

On a donc:
$$\frac{4}{3} \leqslant x \leqslant 2 \Longrightarrow f\left(\frac{4}{3}\right) \leqslant f(x) \leqslant f(2)$$
.

Or
$$f\left(\frac{4}{3}\right) = \frac{5}{3}$$
 et $f(2) = \frac{3}{4} \times 4 - 2 \times 2 + 3 = 3 - 4 + 3 = 2$.

Donc
$$\frac{5}{3} \leqslant f(x) \leqslant 2$$
 et a fortiori: $\frac{4}{3} \leqslant f(x) \leqslant 2$.

3. $f(x) - x = \frac{3}{4}x^2 - 2x + 3 - x = \frac{3}{4}x^2 - 3x + 3 = \frac{3}{4}(x^2 - 4x + 4) = \frac{3}{4}(x - 2)^2$

Pour tout réel x, $(x-2)^2 \ge 0$ donc $f(x) - x \ge 0$ donc $x \le f(x)$.

On considère la suite (u_n) définie par un réel u_0 et pour tout $n \in \mathbb{N}$: $u_{n+1} = f(u_n)$. On a donc, pour tout entier naturel n, $u_{n+1} = \frac{3}{4}u_n^2 - 2u_n + 3$.

4. Étude du cas : $\frac{4}{3} \leqslant u_0 \leqslant 2$.

- **a.** On va démontrer par récurrence que la propriété $u_n \le u_{n+1} \le 2$ est vraie pour tout entier naturel n.
 - Initialisation

D'après la question précédente, pour $x \in \left[\frac{4}{3}; 2\right]$, on a $x \le f(x)$.

Or
$$u_0 \in \left[\frac{4}{3}; 2\right]$$
 donc $u_0 \leqslant f(u_0)$, ce qui revient à $u_0 \leqslant u_1$.

De plus, si
$$x \in \left[\frac{4}{3}; 2\right]$$
, $f(x) \in \left[\frac{4}{3}; 2\right]$.

Or
$$u_0 \in \left[\frac{4}{3}; 2\right]$$
 donc $f(u_0) \in \left[\frac{4}{3}; 2\right]$ et donc $u_1 \in \left[\frac{4}{3}; 2\right]$ et donc $u_{n+1} \leqslant 2$.

Donc $u_0 \le u_1 \le 2$; la propriété est vraie au rang n = 0

Hérédité

On suppose la propriété vraie au rang n, c'est-à-dire $u_n \leq u_{n+1} \leq 2$.

On est dans l'intervalle $\left[\frac{4}{3}; 2\right]$ donc la fonction f est croissante; on en déduit : $f(u_n) \leq f(u_{n+1}) \leq f(2)$.

Or
$$f(u_n) = u_{n+1}$$
, $f(u_{n+1}) = u_{n+2}$ et $f(2) = 2$.

Donc on a : $u_{n+1} \le u_{n+2} \le 2$; la propriété est héréditaire.

Conclusion

La propriété est vraie au rang 0 et elle est héréditaire pour tout $n \ge 0$; d'après le principe de récurrence, elle est vraie pour tout $n \in \mathbb{N}$.

- **b.** Pour tout n, on a $u_n \le u_{n+1} \le 2$ donc la suite (u_n) est croissante et majorée; d'après le théorème de la convergence monotone, la suite (u_n) est convergente vers une limite ℓ telle que $\ell \le 2$.
- **c.** La suite (u_n) est définie par $f(u_n) = u_{n+1}$ où f est une fonction polynôme donc continue.

La suite (u_n) est convergente vers ℓ donc la limite ℓ vérifie $f(\ell) = \ell$.

$$f(\ell) = \ell \iff f(\ell) - \ell = 0 \iff \frac{3}{4}(\ell - 2)^2 = 0 \iff \ell = 2.$$

La suite (u_n) converge donc vers 2.

5. Étude du cas : u₀ = 3. On admet que dans ce cas la suite (u_n) tend vers +∞.
On complète la fonction « seuil » suivante écrite en Python, afin qu'elle renvoie la plus petite valeur de n telle que u_n soit supérieur ou égal à 100.

```
def seuil() :
    u = 3
    n = 0
    while u < 100
        u = 3*u*u/4 - 2*u + 3
        n = n + 1
    return n</pre>
```

6. Étude du cas : $u_0 > 2$.

Pour tout réel x, on a : $x \le f(x)$ donc, pour tout n, $u_n \le f(u_n)$ soit $u_n \le u_{n+1}$; la suite (u_n) est donc croissante.

On en déduit que pour tout n, on a : $u_n \ge u_0$.

Si la suite (u_n) converge vers un réel ℓ , on aura donc : $\ell \geqslant u_0$.

On a vu que la seule limite possible de la suite (u_n) était $\ell = 2$; donc on ne peut pas avoir $\ell \ge u_0$ car $u_0 > 2$.

Pour $u_0 > 2$, la suite (u_n) n'est donc pas convergente.

Exercice 3 $4)_{x>0} g(x) = 4 \ln(3x)$ done $g(2x) = 4 \ln(3x2x) = 4 \ln(6x)$. Doc g(2x)-g(x)=4h(6x)-4h(3x)=4h(\frac{6x}{3x})=4h(2)=h(24)=h(16). Done 9(201) = 9(01) + ln(16) : Afficition @ VRAiE 2) 270 et (ln(2))2+ 10 ln(2)+21=0. Potons y= ln(a) : on a: y2+10ln(y)+21=0. 1=102-4×1×21=16. 170 dan dempranis réells: y = -10-4 = -7 et y = -10+4 = -3. $al_{n}(: h(\alpha) = -7 : x = e^{-7}$ et $h(\alpha) = -3 : x = e^{-3}$. J= { = 7; = 3}: Affination 2: FAUSSE 3) 2 C/R of floy = h(1+e^-x) = h(u(x)) or /u(x)=1+e^-x
-x
)u(0)=-e^-x 8(x) = u(x) = -ex $abe f'(x) = \frac{e^{-x}(1+e^{-x}) - (-e^{-x})x(-e^{-x})}{(1+e^{-x})^2} = \frac{e^{-x} - 2x - 2x}{(1+e^{-x})^2} = \frac{e^{-x}}{(1+e^{-x})^2}$

On txc/R, e-x >0, donc (1+e-x)2 >0 et 81/(x)>0: g et converse sur IR. Allrahba 3 = FAUSSE.

4) To a poor coefficient dixder g'(0) = -0 = -1/2 (MaNa) a per collhet Exeter: $f(a)-f(-a) = \frac{\ln(1+e^{-a})-\ln(1+e^{a})}{2a}$ $m = \frac{\ln(1+\frac{1}{ea}) - \ln(1+e^a)}{2a} = \frac{\ln(\frac{e^a+1}{e^a}) - \ln(1+e^a)}{2a} = \frac{\ln(\frac{e^a+1}{e^a}) - \ln(\frac{e^a}{e^a}) - \ln(\frac{e^a}{e^a})}{2a}$ m= -a = -12. Dist (To) et (Ma No) out in collisted direct of sol perollik. Allacha Le-1/2 sie

EXERCICE 3: VRAI OU FAUX

PROPOSITION 1: **FAUX**

Dans le repère proposé, D(0; 1; 0); C(1; 1; 0); F(1; 0; 1).

$$\overrightarrow{DC}\left(\begin{array}{c} \cdots \\ \cdots \end{array}\right) \Leftrightarrow \overrightarrow{DC}\left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right) \text{ et } \overrightarrow{DF}\left(\begin{array}{c} \cdots \\ \cdots \end{array}\right) \Leftrightarrow \overrightarrow{DF}\left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right)$$

On traduit en termes de coordonnées l'égalité vectorielle du sujet.

On obtient les coordonnées de N: N(1; ½; ½).

PROPOSITION 2:

Les coordonnées de P sont (1/4; 1; 1).

Les coordonnées du vecteur
$$\overrightarrow{PM}(\overset{\dots}{:::}) \Leftrightarrow \overrightarrow{PM}\begin{pmatrix} -\frac{1}{4} \\ -\frac{1}{2} \\ 0 \end{pmatrix}$$

On prend le vecteur $-2\overline{PM}$ comme vecteur directeur de (PM).

On obtient bien la représentation paramétrique proposée dans le sujet.

PROPOSITION 3:

Vecteur directeur de (PK) : $\vec{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$

Vecteur directeur de (MB) :
$$\overrightarrow{MB}(::) \Leftrightarrow \overrightarrow{MB}\begin{pmatrix} 1\\ -\frac{1}{2}\\ -1 \end{pmatrix}$$

Ces deux vecteurs ne sont pas colinéaires car 1 x 3 = 3 mais -1 x 3 ≠ -4 donc les droites (PK) et (MB) ne sont pas parallèles.

Représentation paramétrique de (MB) :
$$\begin{cases} x = 1 + u \\ y = -\frac{1}{2}u \end{cases} \qquad u \in \mathbb{R}$$
 On résout
$$\begin{cases} 1 + 3t' = 1 + u \\ \frac{1}{2} - 2t' = -\frac{1}{2}u \end{cases} \Leftrightarrow \begin{cases} 3t' = u \\ \frac{1}{2} - 2t' = -\frac{1}{2}u \end{cases} \Leftrightarrow \begin{cases} t' = 0 \\ -1 = u \\ 4t' = u \end{cases}$$

$$\begin{cases} 1 + 3t' = 1 + u \\ \frac{1}{2} - 2t' = -\frac{1}{2}u \\ -4t' = -u \end{cases}$$

$$\Leftrightarrow \begin{cases} 3t' = u \\ \frac{1}{2} - 2t' = -\frac{1}{2}u \\ 4t' = u \end{cases} \Leftrightarrow \begin{cases} t' = 0 \\ -1 = u \\ 0 = -u \end{cases}$$

Donc pas de solution.

Donc les droites sont non coplanaires

PROPOSITION 4: **VRAI**

Est-ce que le vecteur \overrightarrow{AG} peut s'écrire comme combinaison linéaire des vecteurs \overrightarrow{EB} et \overrightarrow{AK} ?

$$\overrightarrow{AG}\begin{pmatrix}1\\1\\1\end{pmatrix}$$
; $\overrightarrow{EB}\begin{pmatrix}1\\0\\-1\end{pmatrix}$ et $\overrightarrow{AK}\begin{pmatrix}1\\\frac{1}{2}\\0\end{pmatrix}$

On trouve : $\overrightarrow{AG} = 2\overrightarrow{AK} - \overrightarrow{EB}$

(si pas évident de trouver cette combinaison linéaire, passer par un système)

Donc oui ils sont coplanaires.

EXERCICE 4: Exercise 3 Partie A 1) li ex = +0 ; li 1 = 1, done par somme, li (ex+1) =+0. 1 4=4, done per quotient, li 4=0, done li f(x)=0. De mere, comme li ex=0, li (ex+1)=1, done li f(x)=4 2) his g(x)=0, don la droite d'équation y=0 (à suvoir l'apre de absciss) est asymptote horizontale à genta. light= 4, duc le doite d'équetion y= 4 est asymptote horizontale à gen-0. 3) On étidic le signe de g"sun R: VXER, ex >0 et 4>0, donc 4ex >0 et ex+1>1>0, donc (régle dessignes) (x+1) 3>0. la suite, g''(a) a le mêre signe que c2-1: } (x) 20 equivour à : ex-120 ezze° Conclusion: fest concave sur J-00;0]. fet convene du [o; toc. Concave Convine

Voit mome A d'abscisse o et d'ordonnée g(0)=4=4=2: A(0,2)

Butic B g(x)=ex-xe2+1.

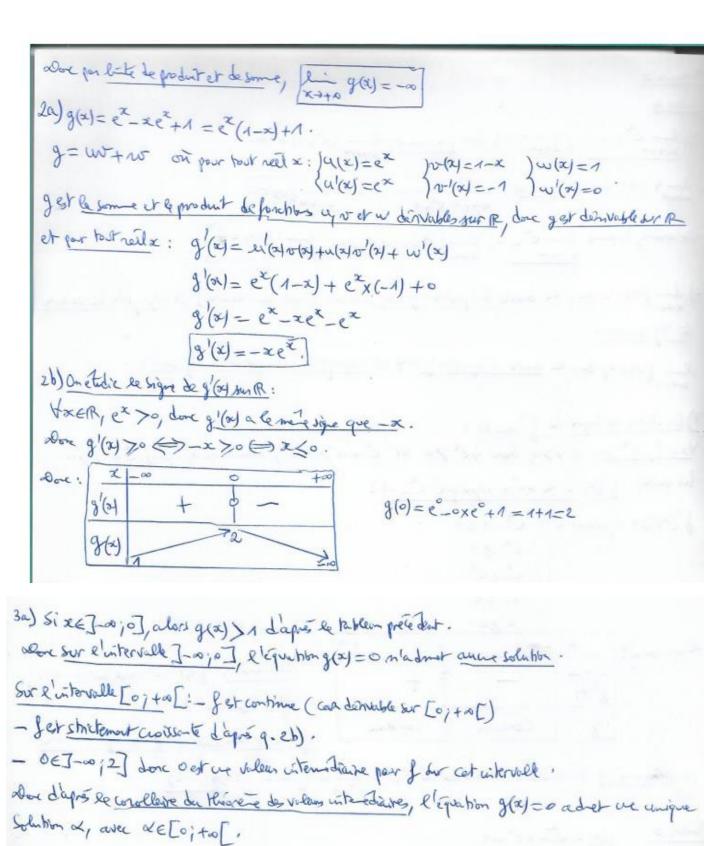
1) Por hites du cours: lie ex=0 et lie x ex=0 (hoissances corpares) et li=1=1

above par lites de somme: lie y(x)=0

Egader un seul port d'inflexion le

En +00, sion me modifie pos l'expression de g(a), or a cue forme cidéterment.

Oh, $g(x) = e^{x}(1-x)+1$ et li $e^{x} = +0$ et li (1-x) = -0 et li 1=1:

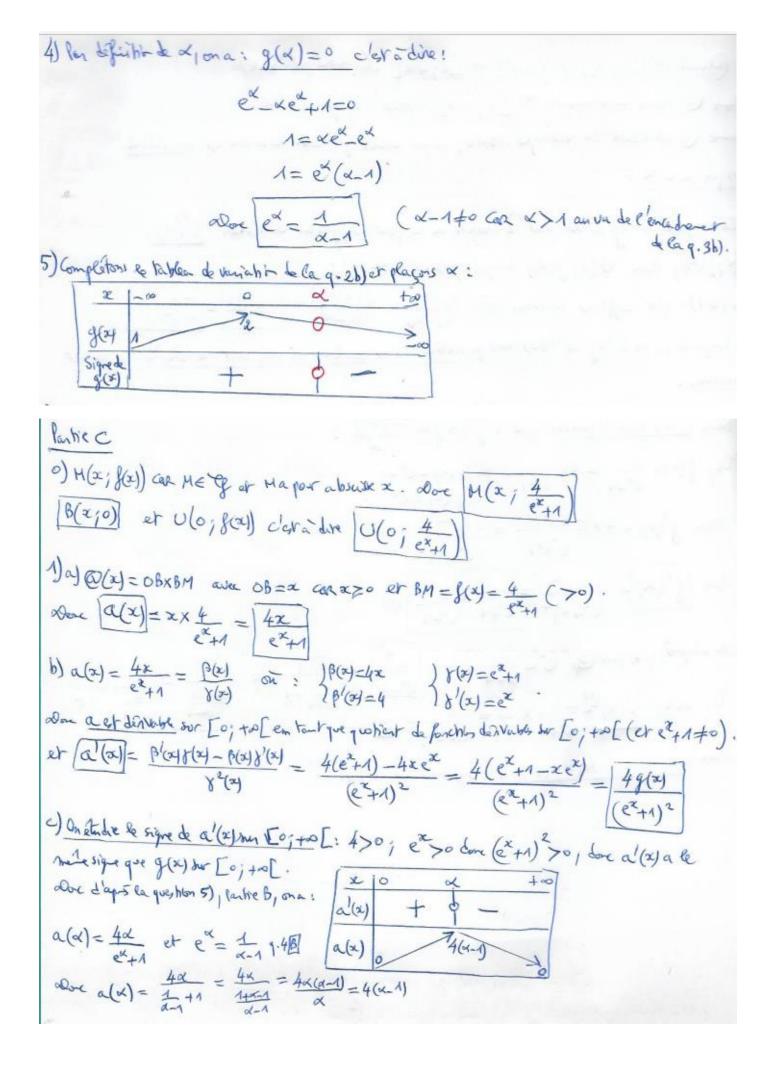


Conclusion: g(x)=0 adret we unique whitin recelle.

36) L'utilisation d'une madrie à columer (métide des balayages successifs, on dichotomie ...) conduità:

1 8 (24)		
0,0386		
0		
-01007		

Done: [1/27/4/1/28



2) @ coîter [o; a] et décontrux [a; + o[. (que ha précédent). Don @ ader un maxim der [0;+2[atter lorsque x = x. Come Q est l'aire du rectargle OBMU, il en rédulte que cette donnière est masariale lorique x = x. 3) La targente à g en le point d'absuix & a pour coefficient directeur g (x). M(x; g(d), don U(o; g(d)) d'apris q.o) et B(x; o). Doc (BV) a par coefficer dixeren $[m] = \frac{4v - 4B}{x_1 - x_2} = \frac{g(\alpha) - o}{\sqrt{\alpha}} = \frac{-g(\alpha)}{\sqrt{\alpha}} = \frac{-4}{\sqrt{\alpha}}$ La tayente en M à leg et (BU) sont parallèles vict sculeurs i elle ont le mère coefficent directeur. Nous devins done prouver que: f(x) = -f(x): $O_{E_1} f(x) = \frac{4}{e^x + 1} = 4x \frac{1}{y(x)}$ or $f(x) = e^x + 1$ alor g'(x) = 4x (-8'(x)) = -4ex (ex+1)2 alor $\left| \frac{g'(\alpha)}{(e^{\alpha}+1)^2} \right| = \frac{-4}{(e^{\alpha}+1)} \times \frac{e^{\alpha}}{(e^{\alpha}+1)} \times \frac{e^{\alpha}}{($ OR dapper q.4) partially, $e^{\alpha} = \frac{1}{\alpha - 1}$, done $e^{\alpha} = \frac{1}{\alpha - 1} = \frac{1}{\alpha - 1} = \frac{1}{\alpha - 1} = \frac{1}{\alpha}$ Pan suite, & (x) = -4 x 1 = -4 = m. shore la tangente en M(x, f(d)) ir (BU) sont paralleles.